R(x)=-3(x^2-25x+156.25)+468.75

Simple and best practice solution for R(x)=-3(x^2-25x+156.25)+468.75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(x)=-3(x^2-25x+156.25)+468.75 equation:



(R)=-3(R^2-25R+156.25)+468.75
We move all terms to the left:
(R)-(-3(R^2-25R+156.25)+468.75)=0
We calculate terms in parentheses: -(-3(R^2-25R+156.25)+468.75), so:
-3(R^2-25R+156.25)+468.75
We multiply parentheses
-3R^2+75R-468.75+468.75
We add all the numbers together, and all the variables
-3R^2+75R
Back to the equation:
-(-3R^2+75R)
We get rid of parentheses
3R^2-75R+R=0
We add all the numbers together, and all the variables
3R^2-74R=0
a = 3; b = -74; c = 0;
Δ = b2-4ac
Δ = -742-4·3·0
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5476}=74$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-74}{2*3}=\frac{0}{6} =0 $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+74}{2*3}=\frac{148}{6} =24+2/3 $

See similar equations:

| d/6+14=18 | | 2c^2+4c-84=0 | | 3/4d-1/2=3/8+1/2d | | x+5+7x=85 | | f-(-19)=11f+23-20f | | -7v+2(v-8)=-31 | | 3y+10=5y=3 | | 7k^2-25=30k | | 27+x/4=3+x | | -9m^2-5m+3=9 | | -5u=-2 | | 33=x+3-0.4x | | 6,000+-25p=4,000 | | x2+20x+16=0 | | x+5/3=2×/4 | | 2x+57=11 | | 5c^2+5c-30=0 | | -6(7-r)=30 | | 12057.6=3.14r^2 | | 4=f-72/5 | | 12057.6=3.14r^2*15 | | 8x+5=5.29 | | 7x-7=4x+14= | | 3x+39=7x-21 | | f/6+83=90 | | 12x=6=-10 | | 7e-4=24 | | 6(b-23)+9=45 | | -4n–8=6(n+2) | | -2-13.8x=-8x-(6x1 | | −5x+12=Px+Q | | 1-3/4n=3/8+5/6n |

Equations solver categories